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Abstract—The reaction of N-tosyliminoisoquinolinium ylides with trimethylsilylketene as a C2 unit introducing reagent, giving
unexpected [3+2] cycloadducts, pyrazolo[5,1-ajisoquinolines, is described.
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Trimethylsilylketene (TMS ketene) occupies an impor-
tant position, most notably in its service as a masked
ketene (CH,=C=0).! TMS ketene exhibits milder reac-
tivity than labile ketene and is more convenient in view
of its easy handling and long-term storable stability. We
have already demonstrated that TMS ketene, as a C2
unit introducing reagent, is quite useful for the construc-
tion of various heterocycles.? For instance, TMS ketene
smoothly reacts with isoquinolinium methylides to give
[3+2] cycloadducts, pyrroloisoquinolines.?’ As extension
of this work, we planned to investigate the reaction of
tosyliminoisoquinolinium ylides 1, aza-analogs of iso-
quinolinium methylides, with TMS ketene.

The reaction of tosyliminoisoquinolinium ylide 1a with
1.2 mol equiv of TMS ketene® was examined under var-
ious reaction conditions. The selected results are shown
in Table 1. As can be seen, some trends are apparent.
First, non-base, and the use of pyridine exhibiting weak
basicity and K,CO3; were not particularly effective at all.
Second, the use of Et;N and i-Pr,NEt allowed ylide 1a
and TMS ketene to react. After completion of the
reaction, usual work-up and purification afforded the
unexpectedly cyclized product 2a, pyrazolo[5,1-aliso-
quinoline: our expected product 3 was not produced in
detectable amounts. The structure of 2a was unambigu-
ously determined by comparison of sample 2a, which
was prepared independently by Hosomi and Tominaga’s
method.* The physical data of 2a were as follows.
Yellow powders of mp 61 °C (EtOAc): lit.°> 62 °C. IR
(CHCl;): v=1484, 1435, 1371ecm'. '"H NMR
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Table 1. Optimization of reaction conditions

TMSCH=C=0

C@ + (1.2 mol equiv) | N

—~N- R > N

NTs base (3 mol equiv) \ N
1a - reflux, 24 h 2a L/

Entry Solvent Base Yield (%) of 2a

1 THF None No reaction

2 Toluene None Complex mixture
3 Toluene Pyridine Complex mixture
4 Toluene K,CO; Complex mixture
5 Toluene Et;:N 63

6 Toluene i-ProNEt 50

7* DMF Et;N 47

#The reaction was performed at 110 °C.

(270 MHz, CDCl3): 6 =6.92 (d, J=38.2 Hz, 1H), 6.93
(s, 1H), 7.45-7.54 (m, 2H), 7.65 (br d, J = 7.7 Hz, 1H),
7.95 (d, J=1.6 Hz, 1H), 8.03 (br d, J=8.2 Hz, 1H),
8.21 (d, J = 7.4 Hz, 1H). >*C NMR (67.8 MHz, CDCl5):
0=97.3,111.9, 123.5, 124.4, 126.2, 126.9, 127.4, 127.6,
128.5, 138.1, 140.9. EIMS: m/z (%) =168 (100, M™).
Anal. Caled for C;;HgN,: C, 78.55; H, 4.79; 16.66.
Found: C, 78.72; H, 5.00; 16.44. Thus, Et3N as a base
and aromatic solvent were found to be the most effective
combination for obtaining unexpected [3+2] cyclo-
adduct 2a (entry 5).
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Table 2. Substrate generality

5 4 TMSCH=C=0

6 N
R@ . (2.4 mol equiv) R- | N
7 ZN-NTs EtsN (6 mol equiv) \ /\N
1 - reflux, 24 h 2
Entry R Solvent Time (h)  Yield (%)
12 4-Br (1b) Toluene 48 75 (2b)
2¢ 5-NO; (1¢) Toluene 48 79 (2¢)
3 6-F (1d) Toluene 24 71 (2d)
4 6-Me (1e) Toluene 24 62 (2e)
5 6-MeO (1f) Xylene 72 71 (2f)
6 6,7-di-MeO (1g)  Xylene 72 14 (2g)

#The reaction temperature was 80 °C.
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The substrate generality of this unexpected reaction is
shown in Table 2. The reactions were performed with
2.4 mol equiv of TMS ketene and 6 mol equiv of Et3N,
because the yields of the reactions in Table 2 with
1.2 mol equiv of TMS ketene and 3 mol equiv of Et;N
were moderate or low.® Tosyliminoisoquinolinium
ylides 1b—f bearing electron-withdrawing substituents
such as fluoro and nitro groups, and electron-donating
substituents such as mono-methoxy and methyl groups
on the isoquinoline ring were found to be employable,
giving the corresponding pyrazolo[5,1-alisoquinolines
2b-f in 62-79% yield.” Unfortunately, ylide 1g bearing
strong electron-donating substituents such as di-meth-
oxy groups gave 2g in 14% yield. The reaction mecha-
nism® for the formation of unexpected [3+42]
cycloadduct 2 including the deoxygenation and detosy-
lation steps’ (from 5 to 2) is not clear at the present time.
But we are tempted to assume that the initial step is a
stepwise process as follows: nucleophilic attack of ylide
1 to TMS ketene followed by cyclization of the resulting
betaine 4 produces 5 (Scheme 1), because we previously
demonstrated that the [4+2] cycloaddition of TMS
ketene and a 1,3-diene proceeded by a stepwise
process.’?

In summary, the reaction of N-tosyliminoisoquinolin-
ium ylides with TMS ketene as a C2 unit introducing
reagent has been found to give unexpected [3+2]
cycloadducts, pyrazolo[5,1-alisoquinolines. %12
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The results for the reactions with 1.2 mol equiv of TMS
ketene and 3 mol equiv of Et;N were as follows: 2b (y.
40%), 2¢ (52%), 2d (55%), 2f (23%).

The synthesis of 2b bearing a nitro group using Hosomi
and Tominaga’s method* was not efficient, although the
efficiency for the synthesis of 2a was similar to our method
(Scheme 2).

For a recent example of the 1,3-dipolar cyclization of N-
ylides, see: Fang, X.; Wu, Y.-M.; Deng, J.; Wang, S.-W.
Tetrahedron 2004, 60, 5487-5493, and references cited
therein.

A fragment of p-acetoxytoluene in the reaction mixture,
which was quenched with Ac,O, was observed by LC-MS.
The N-p-tosyliminoisoquinolinium ylides 1a—g were easily
prepared by the standard tosylation of 6.

o %}
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Z P SNH,
6

R

Representative procedure for cyclization: a mixture of N-p-
tosyliminoisoquinolinium ylide (1a) (50.0 mg, 0.168 mmol)
and Et;N (0.07 mL, 0.50 mmol) and trimethylsilylketene
(0.45mL, 0.20 mmol, 0.45M in toluene solution) in
toluene (2.0 mL) was refluxed for 24 h, allowed to cool,
and directly concentrated. The residue was purified
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by silica gel column chromatography (hexanes—EtOAc,
7:1) to afford pyrazolo[5,1-alisoquinoline (2a) (17.9 mg,
63%).

Selected spectral data are as follows. For 2¢: Orange
powders of mp 180-182 °C gEtOAcfhexane). IR (CHCly):
v=1371, 1339, 1211 cm™'. '"H NMR (270 MHz, CDCl;):
0="7.09 (br d, J=2.2 Hz, 1H), 7.67 (dd, J =8.1, 8.1 Hz,
1H), 7.77 (d, J=8.1 Hz, 1H), 8.05 (d, J=2.2 Hz, 1H),
8.24 (br d, J= 8.1 Hz, 1Hl 8.38 (br d, /= 8.1 Hz, 1H),
8.42 (d, J=8.1 Hz, 1H). °C NMR (67.8 MHz, CDCl;):
0 =98.84, 105.97, 121.83, 124.54, 126.22, 126.70, 129.03,

\NH

O\_\ZO Me

" EtN, EtOH

Scheme 2.
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129.26, 136.91, 141.96. EIMS: m/z (%) =213 (100, M™).
For 2f: Orange powders of mp 104-105°C (EtOAc-
hexane). IR (CHCls): v=1485, 1472, 1437cm™!. 'H
NMR (270 MHz, CDCly): 6 =3.93 (s, 3H), 6.85-6.87
(m, 1H), 6.92 (d, J = 7.4 Hz, 1H), 7.11 (d, J = 2.5 Hz, 1H),
7.18 (dd, J = 87 2.5Hz, 1H), 7.93 (d, J=2.0Hz, 1H),
8.00 (d, J=8.7Hz, 1H), 8.23 (d, J=7.4Hz, 1H). 3¢
NMR (67.8 MHz, CDCly): 6=55.47, 96.24, 108.23,
111.61, 117.21, 118.63, 125.16, 126.70, 130.27, 138.38,
141.16, 159.13. EIMS: m/z (%) = 198 (100, M ™).

Q

a (X=H); y. 7%
b (X=NO,); y. 24%

) NaOH
2) PPA

X=NO,;y. 10%
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